www.a2zpapers.com

Exam. Code : 103204 Subject Code : 1125

B.A./B.Sc. Semester-IV
 MATHEMATICS

Paper-I

(Statics and Solid Geometry)
Time Allowci- 3 Hours]
[Maximum Marks-50
Note :- Do any five questions, selecting atleast two question: from each section. All questions carry equal marks

SECTKNN-A

1. (a) Prove that the rescitar of two forces acting at a point O along OA a 10 OF , and equal in magnitude to $\lambda \mathrm{OA}$ and $\mu \mathrm{OB}$, respecively is equivalent to $(\lambda+\mu) O C$, where C is a po:ni in $A B$ such that $\lambda \quad \mathrm{CA}=\mu . \mathrm{CB}$.
(b) ABC is a triangle and O a poinı i九 its plane. A force R acts along AO . Resolve R inic, tw) forces parallel to it and acting at B and C, respectively, where O is the circumcentre of the triangle.
2. (a) Prove that if any number of co-planer forces ac.ing on a rigid body have a resultant, the algebraic sum of their moments about any point in their plane is equal to the moment of their resultant about that point.
(b) Three forces act at the corner of a square, each perpendicular to the plane of the square. Find their magnitudes if the resultant is a given force of magnitude R acting at the fourth corner.
3. (a) Prove that two couples acting in the same plane are equivalent to a single couple whose moment is the algebraic sum of the moments of the separate rouples.
(b) Frove that any force is equivalent to an equal and parallel force at an arbitrary point together with a co.ple of moments equal to the moment of the given force about that point.
4. (a) One end of unifoim rod is attached to a hinge and other end is surported by a string attached to the extremity of the sod. The rod and the string are inclined at the sam².gle θ to the horizontal, if W be the weight of the roci show that action at the hinge is $\frac{W}{4} \sqrt{9+\cot ^{2} \theta}$. Also find the tension in the string.
(b) A weight W is supported by friction $\checkmark n$ a plane inclined at an angle α to the horizon. Show that it can not be moved up the plane by the horizor.ai force less than $W \tan 2 \alpha$.
www.a2zpapers. com
5. (a) A uniform quadrilateral ABCD is such that the diagonal AC bisects it and BD divides it in two parts in the ratio $2: 1$. Show that it's C.G. divides AC in the ratio $5: 4$.
(b) Find C.G. of a hollow hemisphere.

SECTION-B

6. (a) A iz a point on $O X$ and B on $O Y$ so that the angie JAB is constant $(=\alpha)$. On AB as diameter a circle is described whose plane is parallel to OZ . Prove t'at as AB varies the circle generates the cone $2, y-\iota^{2} \sin 2 \alpha=0$.
(b) Find the equaiion $\cap f$ the cone of revolution with vêrtex at the on? n^{2}, the axis as the y -axis and semi vertical angle : 0°.
7. (a) Find the equation of the whose vertex is $(2,-3,1)$ and whose guiding ruse is $4 x^{2}+y^{2}=1$, $\mathrm{z}=0$.
(b) Prove that the equation $x^{2}-2 y^{2}+3 z^{2}-4 x y+$ $5 y z-6 z x+8 x-19 y-2 z-20=9$ represents a cone, find its vertex.
8. (a) Prove that the equation $\sqrt{\mathrm{fx}}+\sqrt{\mathrm{gy}}+\sqrt{\mathrm{hz}}=0$ represents a cone which touches the co-ordinates planes and that the equation of the reciprocal cone is fyz $+\mathrm{gzx}+\mathrm{hxy}=0$.

www.a2zpapers.com

(b) If $\frac{x}{5}=\frac{y}{-4}=\frac{z}{1}$ is one of the sets of three mutually perpendicular generators of the cone $5 y z-8 z x-3 x y=0$, find the equations of the other two.
9. (a) Find the equation of the right circular cylinder whrse axis is $\frac{x-2}{2}=\frac{y-1}{1}=\frac{z}{3}$ and passes through $(0,0,3)$.
(b) Find the ecuation of the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the elliose $x^{2}+2 y^{2}=1, z=0$.
10. (a) Find the equation oi thi= quadric cylinder with generators parallel to x-axis a ad passing through the curve $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz} \mathrm{z}^{2}=1, \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{p}$.
(b) Find the equation of the right circular zylinder of radius 4 and whose axis is the line $x={ }^{\prime} y=-z$.

